
Geometry-based Muscle Modeling for Facial Animation

Kolja Kähler J̈org Haber Hans-Peter Seidel

Max-Planck-Institut f̈ur Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany
{kaehler,haberj,hpseidel}@mpi-sb.mpg.de

Abstract
We present a muscle model and methods for muscle
construction that allow to easily create animatable facial
models from given face geometry. Using our editing tool,
one can interactively specify coarse outlines of the mus-
cles, which are then automatically created to fit the face
geometry.

Our muscle model incorporates different types of mus-
cles and the effects of bulging and intertwining muscle
fibers. The influence of muscle contraction onto the skin
is simulated using a mass-spring system that connects the
skull, muscle, and skin layers of our model.

Key words: physics-based facial animation, muscle / skin
model, muscle editor, mass-spring system

1 Introduction

Recently, the development of more and more accurate
simulation of human characters based on their anatomy
has led toanatomically based modelingas the bottom-
up approach for building characters from bones, muscles,
and skin.

For human faces, however, this approach is unsuitable
if the target geometry is already given. Since the mus-
cles of the face lie closely underneath the skin and have
a great influence on the shape and appearance of the sur-
face, it is difficult to model the skin from skull and mus-
cles in such a way that the result bears close resemblance
with the target face. On the other hand, surface geometry
can easily be acquired using for instance a range scanner.
Thus, our approach is to adapt the muscle geometry to the
prescribed facial geometry.

To facilitate this task, we have developed an interactive
muscle editor, which is depicted in Figure 14. The user
can roughly sketch a layout of facial muscles, which are
then automatically fitted to the given face mesh.

2 Previous Work

Techniques for animating human beings and human faces
in particular have been an active area of research since
the early 1980’s [18, 15]. Apart from some recent image-
based techniques [17, 1] and methods that apply previ-
ously captured facial expressions to a face model [8], the

methods developed so far can be divided into two cate-
gories: parametric and physics-based models [16].

Parametric models control the shape of the skin by di-
rectly manipulating the geometry of the surface [15, 4].
WATERS [24] presented a muscle model which uses mus-
cle vectors and radial functions derived from linear and
sphincter muscles to deform a skin mesh. CHADWICK

et al. [2] use free-form deformations to shape the skin
in a multi-layer construction containing bones, muscles,
fat tissue, and skin. A B-Spline surface model has been
used by NAHAS et al. [14] to generate synthetic visual
speech, while a variational approach is presented by DE-
CARLO et al. [6] to generate novel synthetic face mod-
els using anthropometric statistics. The MPEG-4 stan-
dard [9] specifies a set of 68 facial animation parame-
ters (FAPs) which can be applied to any suitable head
model. GOTO et al. [7] use these FAPs to control their
facial animation system. Though parametric models can
be applied at relatively low computational costs, realistic
blending between facial expressions is problematic [25].
Also, the range of possible skin deformations is limited.

Physics-based models typically use mass-spring or fi-
nite element networks to model the (visco-)elastic prop-
erties of skin [18, 12, 11]. WATERS and FRISBIE [25]
proposed a two-dimensional mass-spring model of the
mouth with the muscles represented as bands. A three-
dimensional model of the human face has been devel-
oped by TERZOPOULOSand WATERS [21]. Their model
consists of three layers (cutaneous tissue, subcutaneous
fatty tissue, and muscles) that are embedded in a mass-
spring system. Due to additional volume preservation
constraints, this approach produces realistic results such
as wrinkling at interactive frame rates. A framework for
facial animation based on a simplified version of this
model was presented by LEE et al. [13]. Their tissue
model consists of two layers (dermal-fatty and muscles)
and is connected by springs to a skull structure that is es-
timated from the surface data. The mass-spring system
used in this approach also considers volume preservation
and skull penetration constraints. The face model de-
signed by WU et al. focuses on the viscoelastic properties
of skin: muscles are represented by surfaces of revolu-
tion [28] or B-spline patches [27], which can be specified

{kaehler,haberj,hpseidel}@mpi-sb.mpg.de

Figure 1: Generic skull model fitted to head using affine
transformation for estimating assignment of skin regions
to skull and jaw.

Figure 2: Head model prepared from scan data (left), cut
up and simplified to represent the skull (right).

interactively. Their model is able to generate expressive
wrinkles and skin aging effects. CHEN and ZELTZER [3]
developed a finite element muscle model to simulate the
deformation of individual muscles without an overlying
skin tissue. Recently, SCHEEPERSet al. [19] and WIL -
HELMS and VAN GELDER [26] presented anatomy-based
muscle models for animating humans and animals. Their
models incorporate skeletal bones and joints as well as
muscle geometry. However, the skin tissue is represented
only by an implicit surface with zero thickness [26].

3 Our Approach

Our model for muscle-based facial animation uses three
conceptual layers:

• a skin / tissue layer representing the epidermis and
subcutaneous fatty tissue;

• a layer of muscles attached to the skull and inserting
into the skin;

• the underlying bone structure, composed of immov-
able skull and rotating jaw.

Our input data consists of an arbitrary triangle mesh
representing the skin geometry, which is typically ob-
tained from a range scanner. The skull geometry
and the layout of the facial muscles are created semi-
automatically, based on the face mesh. Animation of the
face is achieved by physics-based simulation of a mass-
spring system that connects the three layers of our model.

3.1 Skull and Jaw
Since we operate on models acquired from range data,
we don’t have access to the actual skull geometry. In-
stead, we use approximations of skull and jaw to which
skin surface nodes and muscles are attached. Other than
by computing a single offset surface [13], we distinguish
between the fixed part of the skull and the movable jaw.

We use the skull and jaw meshes to determine whether
a part of the skin and muscle layers lies over the skull
or over the jaw. For the latter, that part will follow the
rotation of the jaw.

If a skull model is available, it can be aligned to the
geometry by affine transformations. While it is generally
not possible to match a generic skull to different human
heads in this way, the approximation is good enough for
assigning skin regions to skull or jaw, see Figure 1. Al-
ternatively, an approximated skull model is obtained by
cutting up the original input mesh, roughly separating the
jaw from the rest of the head (cf. Figure 2). A standard
mesh simplification algorithm [10] is applied, since we
found that a coarse approximation of the bone structure
is sufficient. Finally, the simplified geometry is scaled
down (by a small offset determined by the skin thickness)
and placed inside the head model. This approach is nec-
essary for synthetic heads which have no real anatomical
counterpart, see for instance Figure 13. The same skull
model can be used without further work for multiple vari-
ations of the original head geometry, such as low and high
resolution versions, or minor changes in facial details.

The skull and jaw meshes are used only while inter-
actively building muscles in the editor and during the
startup phase of the animation system. They are not used
during the runtime of an animation, since skull penetra-
tion constraints are handled internally to the mass-spring
mesh, cf. Section 3.3.

3.2 Muscles

Our muscle model is based on a piecewise linear repre-
sentation similar to the one developed by LEE et al. [13],
where isotonic contraction is expressed by shortening the
linear segments. A muscle can either contract towards
the end attached to the skull (linear muscle) or towards
a point (circular muscle). In our model, each of the
segments is additionally assigned an ellipsoidal shape.

Figure 3: Different types of muscles supported by our
model: linear (1), sheet (2), curved (3), and sphincter (4)
muscles (original image from [20]).

The piecewise linear muscle “fibers” can be combined
into groups to formsheet muscles. Implicit surfaces for
specifying the shape of muscles have been used before:
SCHEEPERSet al. [19] also arrange ellipsoids to form
more complex muscles. Their “general muscle model”
uses bicubic patches, whereas our structure is composed
of quadric segments. For construction of the muscles
we need to perform operations on the segments that are
readily available in the quadric representation: ray in-
tersection tests, normal computation, and inside / outside
tests [5]. For computation of deformed muscle shapes
during animation only affine invariance is needed, so
other segment shapes could be used efficiently as well.

Using this model, we can lay out muscles in the various
configurations that appear in the human face: long and
thin strands (zygomatic major) as well as broad sheets
(frontalis), curved muscles (levator labii sup. alaeque
nasii), and sphincters (orbicularis oris, though this mus-
cle is in fact built from segments but usually approxi-
mated as a sphincter), see Figure 3.

Muscles are often layered, sliding freely across each
other. As WATERS and FRISBIE point out [25], muscles
may also intertwine and merge so that their actions are
coupled, a fact that can be observed especially in the re-
gion around the mouth. In our model, muscles can merge
in this way and move other muscles. To make for instance
the lower part oforbicularis oris follow the rotation of
the jaw when the mouth is opened, muscles can be at-
tached to either the immovable skull or the rotatable jaw .
We also follow WATERSand FRISBIE in that the muscles
drive the animation and are not in turn moved by the skin.
In reality, theorbicularis orisis pulled downwards by the
skin when the jaw opens.

} skin mesh}
muscle layer

} skull layer}
mirrored
skull / muscle
attachments

Figure 4: Mass-spring system in our model. Top: Re-
laxed muscle, outer springs mirroring skull and muscle
attachments. Bottom: Contracted muscle, with mass
points moving due to the contraction marked by ◦.

3.3 Skin and Tissue Simulation
The top layer of our model represents the skin. Currently
we model elastic properties of the dermis and epidermis
and the fatty layer underneath. The skin layer connects to
muscles and bones, see Figure 4.

The nodes and edges of the input triangle mesh com-
prise the initial spring mesh. These springs are bipha-
sic, i.e. they become stiffer under high strain, to roughly
mimic the non-linear elastic properties of skin. The ini-
tial stiffness constants are computed according to VAN

GELDER [22].
Each surface node is connected to either the bone layer

or to an underlying muscle by a spring with low stiffness,
simulating the fatty subcutaneous layer that allows skin
to slide freely.

When the skin mesh is modeled as a simple mem-
brane, it may penetrate the muscle and bone layers when
stretched. Also, the mesh can easily fold over. Meth-
ods for local volume preservation and skull penetration
constraints have already been proposed in [13]. We com-
bine both requirements into one and attach another spring
to each mesh node that pulls the nodeoutwards, mirror-
ing the spring that attaches it to the bone layer (cf. Fig-
ure 4). This can be interpreted as a model of the outward-
directed force resulting from the internal pressure of a
skin cell. Similarly, springs are added to mirror muscle
attachments. However, these mirrored spring nodes move
along with their counterparts when the muscle contracts.
Thus a surface node preferably moves in a direction tan-
gential to the skull and muscle surface. Thereby intersec-
tions are avoided in practice though not completely ruled
out – violent distortion can still cause intersections. A
nice property of this mechanism is the seamless integra-

p
21

p

4

p
3

p
p

0

Figure 5: Muscle fiber with control polygon P = {pi}
and per-segment ellipsoids.

tion into the spring mesh system: no special treatment of
additional constraints is needed.

The equations of motion for the mass-spring system
are numerically integrated through time using an explicit
forward integration scheme (Verlet leapfrog [23]). To
maximize stability, we measure the computation time for
one time step of the simulation. The step size is dynam-
ically adjusted to run as many small steps as possible
in the time slot between two rendered frames, as deter-
mined by the given frame rate. In addition, we use an
over-relaxation scheme to speed up the convergence of
our simulation. This is accomplished by displacing the
surface nodes to their estimated final position before in-
voking the solver. The estimation is based on muscle con-
traction and jaw rotation.

4 Muscle Model Details

Muscles are built from individual fibers that are in turn
composed of piecewise linear segments. A quadric shape
(ellipsoid) is aligned to each of these segments and scaled
to the length of the muscle segment. The width and height
of each ellipsoid correspond to the extent of the muscle
parallel and orthogonal to the skin surface, respectively.

The initial description of a muscle fiber consists ofn
control pointspi ∈ R3 (i = 0, . . . , n− 1) forming a
control polygonP as shown in Figure 5.

4.1 Contraction
Given a contraction valuec ∈ [0, 1], wherec = 0 means
no contraction andc = 1 full contraction, a new control
polygon Q = {qi}n−1

i=0 is computed (cf. Figure 6).
Each control pointpi ∈ P is assigned a parameterti ∈

[0, 1]:

ti :=

0 , if i = 0,∑i
j=1 ‖pj−pj−1‖∑n−1
j=1 ‖pj−pj−1‖

, else.

The parametersti are scaled by the contraction factor
1−c and clamped to[0.01, 1] to avoid shrinking a segment
too much:

t̃i := max{(1−c)ti, 0.01}.

Next, we map each parametert̃i to the indexki ∈
{0, . . . , n−2} of the starting point of the segment that

0 6
pp

3

q
12

6
qq

0*p
==

q

q
0

1
q 2

4
3

q
q

p

1
p

0
p p

4

3
p

2

q

1
p

p

p
3

4
p

p
2

5
q q

4

5

q

Figure 6: Contraction (c = 1
2) of a linear (top) and a

sphincter (bottom) muscle fiber. The control points {pi}
and {qi} represent the relaxed and contracted muscle.

contains̃ti:

ki :=

{
0 , if i = 0,
m : tm < t̃i ≤ tm+1 , else.

Finally, we compute the new control pointsqi by linear
interpolation:

qi := pki + (pki+1 − pki)
t̃i − tki

tki+1 − tki
.

For sphincter muscles, segments are simply contracted
towards a center pointp∗ ∈ R3:

qi := p∗ + (1− c)‖pi − p∗‖.

4.2 Bulge
Real muscles get thicker on contraction and thinner on
elongation. Simulating this behavior enhances visual re-
alism: when the face smiles, the lips retract slightly as
they stretch. On the other hand, the lips get a little thicker,
when the mouth forms an “o” or a kiss (cf. Figure 15).

For linear muscles, we want the center of the muscles
to exhibit the highest bulge, corresponding to the belly of
real muscles. Sphincters bulge evenly, see Figure 7.

In our model, bulging is achieved by scaling the height
of each muscle segmentpi pi+1 by (1 + 2si). Here,si ∈
[0, 1] denotes the scaling factor computed from the length
lri = ‖pi+1 − pi‖ of the relaxed muscle and its current
lengthlci = ‖qi+1− qi‖: si := 1− lci/lri . This results in
a center segment of triple height at maximum contraction.

For each linear muscle with at least three segments, we
additionally multiply si by a simple quadratic function

Figure 7: Relaxed (left) and contracted (right) muscles: a
single fiber (top) and a sphincter (bottom) modeling the
orbicularis oris

that vanishes over the first and last segment and has a
maximum value of 1.0 over the central segment. In this
case, the scaling factorsi is computed as

si :=
(

1− lci
lri

)[
1−

(
2i

n− 2
− 1
)2
]
.

Other, more accurate shape changes could be applied
as well. For skeletal muscles, SCHEEPERSet al. devel-
oped a formulation that preserves volume as well as the
ratio of width to height of the muscle belly [19].

4.3 Quadric Shapes

The transition of an original line segmentpi pi+1 into
the transformed segmentqi qi+1 can be described by an
affine transformation. This transformation is applied to
the quadric associated with the segment. To keep the
nodes of the spring mesh that attach to a muscle on the
muscle surface, we simply apply the transformation to
the attachment points as well. The mirrored muscle at-
tachments (see Section 3.3) are transformed in the same
way to keep the skin nodes above the muscle.

4.4 Intertwined Muscles

The end of a linear muscle can merge into another mus-
cle, which is detected automatically by our system. This
is achieved by testing whether the end pointpn−1 of at
least one fiber lies within the extent of another muscle.
We only test the end points, because we still want mus-
cles to cross without interacting. The muscle segments
connected in this way are stored inconstraint groups. Af-
ter muscle contractions have been set, a constraint reso-
lution phase moves the control points of the segments in
each group such that the original distances between the
control points is maintained. Muscle shape is computed
only after resolving constraints (see Section 4.2), so that a
muscle that is elongated by this mechanism will get thin-
ner accordingly.

Figure 8: A simple grid (left, zygomatic major) and a
non-uniform complex grid (right, orbicularis oris).

5 Building Muscles from Geometry

5.1 Overview
In our system, muscles are created automatically from
coarse outlines that are interactively sketched onto the
face model. From the user’s point of view, the procedure
follows these steps:

1. Load a face mesh and display it in the editor.

2. Lay out the fixed end (i.e. the origin) of a muscle by
specifying at least two grid points.

3. Sketch the basic muscle grid row by row.

4. For a sphincter muscle: specify the center of con-
traction.

5. The muscle grid is refined automatically to fit the
geometry and the muscle is inserted, making it fully
functional for immediate testing and re-editing.

6. Goto step 2 until all muscles are specified.

Besides this basic method for muscle construction,
muscle grids can be re-edited by moving their control
points around. The resulting muscle shape is immedi-
ately shown together with information about the influ-
enced mesh vertices and connections to other muscles,
see Figure 14.

The initial shape of the muscle outline can be of arbi-
trary detail, from the minimum of a quadrilateral up to
highly complex grids, see Figure 8.

5.2 Optimizing Muscle Shape
The surface of a muscle must lie within a prescribed dis-
tance range below the skin surface. Additionally, we want
to create muscles that are well-adapted to the resolution
of the skin mesh: too highly refined muscles just add to
the computational load during animation without enhanc-
ing the visual appearance, while too coarse muscles may
not be following the surface closely enough to result in
realistic deformations.

Given the skin mesh and a muscle grid, our optimiza-
tion step determines the following parameters that are
needed to create the muscles:

• the number of muscle fibers;

• the number of segments per fiber;

• width, height, and length of each segment;

• position of the muscle fiber control points;

• alignment of the quadrics’ coordinate systems.

In addition to the regular grid, the skin thicknessτ s,
which is assumed to be constant over the whole face, and
the minimum and maximum muscle layer thicknessτmmin
and τmmax are input parameters of the optimization step.
These parameters can be adjusted by the user based on
the input geometry.

A muscle is created from its grid by a four-step proce-
dure:

1. Initializing the grid. The initial outline is con-
verted into a regular grid, i.e. all rows are assigned
the same number of grid points. The grid points
are then projected onto the face mesh and placed
slightly underneath the skin surface.

2. Refining the grid. The grid is adaptively refined
until a decent approximation has been found.

3. Creating the muscle.Muscle fibers are created
and aligned to the refined grid.

4. Attaching the muscle. The muscle is attached to
the spring mesh, and the control points of the muscle
segments are attached to either the skull or the jaw.

Details of these steps are explained in the following sec-
tions.

5.3 Initializing the Grid
To obtain a regular grid, we first determine the maximum
numbernmax of grid points per row. Then, additional grid
points are inserted by linear interpolation into every row
that contains less thannmax points.

We now estimate normals at the grid points. For the
various grid layouts we obtained best results by first com-
puting the normal of the balancing plane through the four
corner points of each grid cell and than averaging the nor-
mals of all adjacent cells at each grid point.

Having computed the grid point normals, we find the
triangles of the face mesh that intersect the projection of
the grid onto the skin surface and cache them for fast
lookup during the iterative refinement procedure. The
initial grid points are now displaced along their normal

direction to lie below the skin in an initial distance of
τ s+(τmmin +τmmax)/2, representing the middle of a muscle
of average thickness running through the cell.

5.4 Refining the Grid
The fitting algorithm proceeds by sampling the distances
from each cell to the skin surface. Each cell is exam-
ined and subdivided if necessary. The grid points are then
again displaced to lie within the prescribed distance range
below the surface. Simultaneously, the cell thickness is
adjusted within the boundsτmmin andτmmax. This process is
repeated until no more subdivisions are necessary or can
be applied.

The main loop of this iteration is organized as follows:

repeat
for each grid cell c

(dmin , dmax, pnear , pfar) =
minMaxDistancesToMesh(c);

(enear , efar) =
minMaxError(dmin , dmax, τ s, τmmin , τmmax);

if (enear == 0 and efar == 0)
c.thickness = 2(dmin - τ s)

else if (efar > enear)
trySubdivisionAtPoint(c, pfar);

else
trySubdivisionAtPoint(c, pnear);

moveNewGridPoints();
until no more changes to grid.

The procedureminMaxDistancesToMesh() re-
turns two pointspnear,pfar that are nearest to and farthest
away from the cell in the following sense: we adaptively
subsample the grid cell and shoot a ray from each sample
position in the direction of the associated bilinearly inter-
polated grid normal vector. The base points of the rays
with the nearest and farthest intersection points with the
cached surface area are returned aspnear andpfar along
with their signed distance valuesdmin and dmax. Both
points can be positioned below (positive distance value)
or above the skin surface (negative value), see Figure 9.
The sampling density over the grid cell adjusts to the size
of the cell and the number of cached triangles to ensure a
minimum number of samples per triangle.

The error valuesenear and efar that are computed by
minMaxError() represent the unsigned distancespnear

andpfar would have to move along their grid normal to be
in the allowed range of distances[τ s + τmmin, τ

s + τmmax]
below the skin surface (see Figure 10). Also, if|dmax−
dmin| > τmmin, the distance from the cell to the skin varies
widely over the cell area, so that there is enough space
for insertion of a thin muscle. In this case,(enear, efar) are
set to(|dmin|, |dmax|), causing a subdivision of the cell in
the next step.

G′

M

pnear

dmax > 0

pfar

M

G

dmin < 0

Figure 9: Refinement step for a single grid cell (simpli-
fied two-dimensional view). Top: Points of grid G have
been placed below the skin mesh M along their associ-
ated normals. The closest point of the grid cell lies above,
the farthest point lies below the skin mesh. Bottom: G
has been subdivided at the point of larger error enear (see
also Figure 10).

The proceduretrySubdivisionAtPoint() is
called with the sample position corresponding to the point
with the larger error. A new row and/or column through
that position is inserted into the grid. Before subdividing
a cell along one of its dimensions, we compare the sizes
of the resulting sub-cells with the average extent of the
cached triangles in that direction. If the sub-cells would
get too small, the insertion point is adjusted to make both
parts big enough. If the cell is already too small to al-
low for adjustment, no subdivision along this direction is
performed.

Finally, in moveNewGridPoints() the grid points
inserted by subdivision are projected onto the surface
mesh and displaced byτ s + (τmmin + τmmax)/2 underneath
the skin.

5.5 Creating the Muscle
After a grid has been refined sufficiently, we build a sheet
of muscle fibers. One muscle fiber is inserted longitudi-
nally into each stripe of grid cells, creating one muscle
segment per cell. The size of each ellipsoid is scaled to
fill the surrounding cell, whereas width and length of inte-
rior ellipsoids are slightly enlarged to provide some over-
lap across cell boundaries. Figure 11 shows the creation
of a sheet muscle from a simple grid.

5.6 Attaching the Muscle to Skin
Muscles have to be connected to the spring mesh, so that
contraction will influence nearby skin vertices. We con-

}
τmmax

} τ s
} τmmin

pfar (efar = 0)

pnear(enear> 0)

Figure 10: The range of thickness for muscle shapes: be-
low the skin layer of constant thickness τ s muscles can be
inserted with a thickness in the range [τmmin, τ

m
max]. Error

values for two exemplary points are shown: pnear is out-
side the allowed range for muscle segments and should
be moved upwards (enear > 0). pfar is within range and
need not be moved (efar = 0).

sider the vertices within a specified radius of influence
from the muscle fibers as candidates for muscle attach-
ment: for each of these skin nodes, we compute the clos-
est point on the surface of all quadrics comprising the
muscle sheet and insert a spring connecting the skin node
with that point. An additional spring is created as de-
scribed in Section 3.3 by mirroring the attachment point.

There are special cases where the distance-based com-
putation of attachment points is not sufficient. For in-
stance, when the face mesh has a closed mouth, vertices
along the cut separating the upper and lower lip will have
almost – if not exactly – the same coordinates. These
vertices may thus be attached to the muscles around the
upper and lower lips in a nondeterministic way. This will
likely cause the upper lip to move along with the lower
orbicularis orisand vice versa. To solve this problem, we
weight the distance value of each skin node with the dot
productNsNd, whereNs is the surface normal at the skin
vertex andNd is the normalized vector pointing from the
potential attachment point to that vertex. Thereby mus-
cle segments that lie directly below the skin vertex are
favored.

5.7 Attaching the Muscle to Skull and Jaw
To find out whether a muscle control point should move
along with the jaw or remain fixed, we shoot rays from
the grid points along their normals through the skin mesh
and examine the attachment of the closest skin vertex in
the hit triangle. If the majority of points in a grid row is
closest to skull-attached skin vertices, the corresponding
muscle attachments will also be fixed. Otherwise, mus-
cles will be attached to the jaw, if the closest skin vertices
are mostly assigned to the jaw.

Not all regions of the face have bones underneath, e.g.
the lips and the cheeks. Skin vertices in these regions are
thus not attached to the bone structure. To decide about
the muscle attachment in these cases, we iteratively grow

Figure 11: Side and top view of a coarse (black) and re-
fined (green) grid and the muscle created from it.

the topological neighborhood of the skin mesh around
the intersection point until a bone-attached skin node is
found. Using this technique, the upper part of theorbic-
ularis oris is properly assigned to the immovable skull,
while the lower part is attached to the jaw.

6 Results

We have tested our editing tool on human head models
obtained from range scans (see Figures 12,15) and syn-
thetic data (see Figure 13). After the geometry had been
prepared, creating a set of facial muscles varying widely
in shape as described in Section 3.2 took only a few min-
utes. Some tweaking and experimentation was usually
necessary, though, to achieve good results in animation.
Especially with coarse triangle meshes, a small change in
muscle layout may determine whether a large nearby tri-
angle is influenced by a contraction of that muscle or not.
Here we found it to be important to have good re-editing
facilities and visual feedback about how muscles attach
to the skin.

One advantage of our muscle grid fitting approach is,
that once a rough layout for a muscle has been specified,
the muscle can be automatically rebuilt from this data for
many different head models. Muscles adjusted to differ-
ent mesh resolutions of one head model, e.g. for real-time
rendering or high quality animation, can easily be cre-
ated.

The refinement loop (Section 5.4) typically takes only
a few iterations to create a well-adapted grid that reflects
the curvature and resolution of the skin mesh, allowing
interactive re-editing of the muscle layout with immedi-
ate feedback of the resulting muscle shape. Furthermore,
the initial muscle layout is preserved by our fitting algo-
rithm: design decisions made by the user shouldn’t be
overridden.

The detail views in Figure 15 show some important
features of our muscle model. In the top right image,
the muscles are relaxed and the jaw is slightly rotated to
open the mouth. The lower part oforbicularis oris has

moved along with the jaw. Segments from other muscles
that have been automatically attached to theorbicularis
oris have followed the movement. In the lower right im-
age, the mouth additionally forms an “o” by contracting
theorbicularis oris. The muscle bulges accordingly, pro-
truding the lips slightly while the attached muscles are
thinning due to the elongation.

In our current experimental implementation of mus-
cle model and spring-mesh simulator, we achieve inter-
active frame rates (5 fps on ansgi O2, 16 fps on a
fast PC) for models with a low polygon count of about
3000 triangles. Figure 12 shows some snapshots taken
from an animation. For movies and other current project
information, please visit our web site:http://www.
mpi-sb.mpg.de/resources/FAM/ .

7 Conclusion and Future Work

We have developed a muscle model and an accompanying
muscle editing tool that allows for fast and easy genera-
tion of physics-based animatable face models from real
world geometry. Once the geometry has been prepared,
the model can be brought to life within minutes. New de-
grees of freedom for animation are easily introduced into
a model by adding new muscles.

Preparing the scanned head geometry was the most
time-consuming part of the process: several hours went
into fixing the scans, clearly making this the bottleneck in
the creation of the animated model. Since manual prepa-
ration of skull models also is a time-consuming task, fit-
ting a generic model of a real human skull to the skin
mesh is desirable. Our experiments have shown that a
more sophisticated approach is necessary for a precise
fit. More accurate fitting would also allow us to use non-
constant skin thickness in the simulation, and have mus-
cle thickness change locally according to the available
space. In the same vein, a more precise deformation in-
creases the precision when automatically aligning generic
sets of muscle to other heads.

A promising avenue for research is provided by the
ability to automatically create muscles adapted to face
meshes of different resolution: employing level-of-detail
techniques, multi-resolution facial animation can be
achieved with little effort.

In general, the fitting algorithm delivers good results.
However, it showed that especially in non-uniform re-
gions of the facial mesh, the termination criterion of the
refinement loop is not always adequate. In those cases
we had to manually adjust the parameters of the fitting
procedure, making the process not fully automated. Also
the current method doesn’t take into account the actual
segment shape during refinement. A more sophisticated

http://www.mpi-sb.mpg.de/resources/FAM/
http://www.mpi-sb.mpg.de/resources/FAM/

approach would probably lead to better approximations
of the skin curvature with fewer muscle segments.

The muscle model itself performs well with low com-
putational overhead. We think it would be worthwhile to
add elastic behavior to the muscles themselves, thus al-
lowing them to straighten under tension (contraction and
elongation) and producing more realistic deformations of
merged muscles.

Acknowledgements

The authors are grateful to their “head model” Mario
Botsch and to Christian R̈ossl for operating the range
scanner.

References
[1] V. Blanz and T. Vetter. A Morphable Model for the Syn-

thesis of 3D Faces. InComputer Graphics (SIGGRAPH
’99 Conf. Proc.), pages 187–194, August 1999.

[2] J. E. Chadwick, D. R. Haumann, and R. E. Parent. Lay-
ered Construction for Deformable Animated Characters.
In Computer Graphics (SIGGRAPH ’89 Conf. Proc.),
pages 243–252, July 1989.

[3] D. T. Chen and D. Zeltzer. Pump it up: Computer Anima-
tion of a Biomechanically Based Model of Muscle using
the Finite Element Method. InComputer Graphics (SIG-
GRAPH ’92 Conf. Proc.), pages 89–98, July 1992.

[4] M. M. Cohen and D. W. Massaro. Modeling Coarticu-
lation in Synthetic Visual Speech. InModels and Tech-
niques in Computer Animation, pages 139–156. Springer–
Verlag, 1993.

[5] J. M. Cychosz and W. N. Waggenspeck, Jr. Intersecting a
Ray with a Quadric Surface. InGraphics Gems III, pages
275–283. Academic Press, London, 1992.

[6] D. DeCarlo, D. Metaxas, and M. Stone. An Anthropo-
metric Face Model using Variational Techniques. InCom-
puter Graphics (SIGGRAPH ’98 Conf. Proc.), pages 67–
74, July 1998.

[7] T. Goto, M. Escher, C. Zanardi, and N. Magnenat-
Thalmann. MPEG-4 based Animation with Face Feature
Tracking. InProc. Eurographics Workshop on Computer
Animation and Simulation ’99, pages 89–98, 1999.

[8] B. Guenter, C. Grimm, D. Wood, H. Malvar, and F. Pighin.
Making Faces. InComputer Graphics (SIGGRAPH ’98
Conf. Proc.), pages 55–66, July 1998.

[9] ISO/IEC. Overview of the MPEG-4 Standard.
http://www.cselt.it/mpeg/standards/
mpeg-4/mpeg-4.htm , July 2000.

[10] L. Kobbelt, S. Campagna, and H.-P. Seidel. A General
Framework for Mesh Decimation. InProc. Graphics In-
terface ’98, pages 43–50, June 1998.

[11] R. M. Koch, M. H. Groß, and A. A. Bosshard. Emotion
Editing using Finite Elements. InComputer Graphics Fo-
rum (Proc. Eurographics ’98), volume 17, pages C295–
C302, September 1998.

[12] Y. Lee, D. Terzopoulos, and K. Waters. Constructing
Physics-based Facial Models of Individuals. InProc.
Graphics Interface ’93, pages 1–8, May 1993.

[13] Y. Lee, D. Terzopoulos, and K. Waters. Realistic Model-
ing for Facial Animations. InComputer Graphics (SIG-
GRAPH ’95 Conf. Proc.), pages 55–62, August 1995.

[14] M. Nahas, H. Huitric, and M. Saintourens. Animation of
a B-Spline Figure.The Visual Computer, 3(5):272–276,
March 1988.

[15] F. I. Parke. Parameterized Models for Facial Animation.
IEEE Computer Graphics and Applications, 2(9):61–68,
November 1982.

[16] F. I. Parke and K. Waters, editors.Computer Facial Ani-
mation. A K Peters, Wellesley, MA, 1996.

[17] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and D. H.
Salesin. Synthesizing Realistic Facial Expressions from
Photographs. InComputer Graphics (SIGGRAPH ’98
Conf. Proc.), pages 75–84, July 1998.

[18] S. M. Platt and N. I. Badler. Animating Facial Expres-
sions. In Computer Graphics (SIGGRAPH ’81 Conf.
Proc.), pages 245–252, August 1981.

[19] F. Scheepers, R. E. Parent, W. E. Carlson, and S. F. May.
Anatomy-Based Modeling of the Human Musculature. In
Computer Graphics (SIGGRAPH ’97 Conf. Proc.), pages
163–172, August 1997.

[20] A. Szunyoghy and G. Fehér. Menschliche Anatomie für
Künstler. Könemann, K̈oln, 2000.

[21] D. Terzopoulos and K. Waters. Physically-based Facial
Modelling, Analysis, and Animation.Journal of Visual-
ization and Computer Animation, 1(2):73–80, December
1990.

[22] A. Van Gelder. Approximate Simulation of Elastic Mem-
branes by Triangulated Spring Meshes.Journal of Graph-
ics Tools, 3(2):21–41, 1998.

[23] F. J. Vesely. Computational Physics: An Introduction.
Plenum Press, New York, 1994.

[24] K. Waters. A Muscle Model for Animating Three-
Dimensional Facial Expression. InComputer Graphics
(SIGGRAPH ’87 Conf. Proc.), pages 17–24, July 1987.

[25] K. Waters and J. Frisbie. A Coordinated Muscle Model
for Speech Animation. InProc. Graphics Interface ’95,
pages 163–170, May 1995.

[26] J. Wilhelms and A. Van Gelder. Anatomically Based
Modeling. InComputer Graphics (SIGGRAPH ’97 Conf.
Proc.), pages 173–180, August 1997.

[27] Y. Wu, P. Kalra, L. Moccozet, and N. Magnenat-
Thalmann. Simulating Wrinkles and Skin Aging.The
Visual Computer, 15(4):183–198, 1999.

[28] Y. Wu, N. Magnenat-Thalmann, and D. Thalmann. A
Plastic-Visco-Elastic Model for Wrinkles in Facial Ani-
mation and Skin Aging. InProc. Pacific Graphics ’94,
pages 201–214, August 1994.

http://www.cselt.it/mpeg/standards/mpeg-4/mpeg-4.htm
http://www.cselt.it/mpeg/standards/mpeg-4/mpeg-4.htm

Figure 12: Snapshots from an animation sequence (left to right). The face mesh consists of 3246 triangles. The
animation runs with 5 fps on an sgi O2 (250 MHz) and with 16 fps on a 1.1 GHz Linux PC.

Figure 13: Construction of an animatable model from artificial head geometry. Left to right: Input mesh with eyes
added; approximated “skull” and user-designed muscles; fierce expression; sad expression.

Figure 14: Visual information while editing a mus-
cle: the muscle grid of the currently edited muscle
(yellow); the skin vertices influenced by this mus-
cle (green dots); muscle control points attached to
the jaw (white dots); merged muscle segments (con-
nected by green lines).

Figure 15: Left: The head model contains skull and jaw, eye-
balls, and several groups of muscles. To display these interior
components, the right half of the facial skin is rendered semi-
transparent. Right: Muscles around the mouth: relaxed, mouth
slightly open (top) and contracted, lips forming an “o” (bot-
tom).

	Introduction
	Previous Work
	Our Approach
	Skull and Jaw
	Muscles
	Skin and Tissue Simulation

	Muscle Model Details
	Contraction
	Bulge
	Quadric Shapes
	Intertwined Muscles

	Building Muscles from Geometry
	Overview
	Optimizing Muscle Shape
	Initializing the Grid
	Refining the Grid
	Creating the Muscle
	Attaching the Muscle to Skin
	Attaching the Muscle to Skull and Jaw

	Results
	Conclusion and Future Work

