
Dynamic Refinement of Deformable Triangle Meshes for Rendering

Kolja Kähler J̈org Haber Hans-Peter Seidel

Computer Graphics Group
Max-Planck-Institut f̈ur Infomatik

Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany
E-mail:{kaehler, haberj, hpseidel }@ mpi-sb.mpg.de

Abstract

We present a method to adaptively refine an irregular tri-
angle mesh as it deforms in real-time. The method increases
surface smoothness in regions of high deformation by split-
ting triangles in a fashion similar to one or two steps of
Loop subdivision. The refinement is computed for an arbi-
trary triangle mesh and the subdivided triangles are simply
passed to the rendering engine, leaving the mesh itself un-
changed. The algorithm can thus be easily plugged into
existing systems to enhance visual appearance of animated
meshes. The refinement step has very low computational
overhead and is easy to implement. We demonstrate the use
of the algorithm in our physics-based facial animation sys-
tem.

1. Introduction

In real-time computer animation, polygon meshes are a
popular surface representation due to the high throughput
on current hardware. The drawback is that a polygonal sur-
face is piecewise planar, and we thus have to find a bal-
ance between high visual quality (more polygons) and high
frame rates (less polygons).

A polygon model of a static surface can be built such
that a compromise between the represented amount of detail
and computational complexity is achieved. However, when
the surface is animated by moving the mesh nodes, the re-
sulting mesh doesn’t adapt well to the deformation. Bends
and folds can only appear at the edges of the mesh and are
thus limited by its initial connectivity. This leads to the
unfortunate situation that the model has to provide enough
polygons to accommodate for possible deformations, even
though the surface can be represented well enough with a
far lower number of polygons in its undeformed state. A
model should thus be dynamically refined at runtime where
required.

In this paper, we present a technique to render adaptively
refined versions of a triangle mesh. Refinements are com-
puted only in those areas where the mesh is deformed. Since
these refinements are used for rendering only and can be
easily computed on the fly, we donot update the original
triangle mesh. This is advantageous for two reasons: first,
the application doesn’t have to deal with dynamic mesh con-
nectivity, making integration into existing systems a simple
plug-in operation. Second, the refined triangles are not re-
tained between rendered frames, so additional memory us-
age is kept to a minimum.

Our method has been integrated into a framework for
physics-based animation of polygonal models, see Figure 1.
A spring mesh is created from the initial triangle mesh: ver-
tices correspond to point masses and edges correspond to
springs. The spring mesh deforms in the simulation loop
and its nodes are used to update the triangle mesh. During
animation it shows that the resolution of the triangle mesh is
often too coarse in highly deformed regions. However, the
simulation can be decoupled from the rendering: without
changing the resolution of the spring mesh (which defines
the precision of the simulation), we can render a smoother
version of the deformed triangle mesh.

2. Related Work

A large number of surface representations are used in
computer animation. Among the most popular choices are
polynomial patches, polygons, and subdivision surfaces.

Polynomial patches have long been used in modeling and
animation [13, 4]. Surfaces built from such patches are de-
fined by a relatively coarse control mesh. Animation of the
surface can be achieved by deforming this mesh. The gen-
erated surface is inherently smooth, but for complex geom-
etry built from multiple patches, preservation of smooth-
ness conditions across patch boundaries becomes difficult.
Patches can be refined globally via knot insertion [2] or lo-
cally using hierarchical methods [5]. For real-time render-
ing, patches are usually tessellated using uniform [14, 9]

deformed meshinitial geometry spring mesh refined mesh rendering

Figure 1. Overview of our physics-based animation system. Without affecting the internal state of
the simulation or the triangle mesh itself, refinements are computed from the deformed mesh and
passed to the rendering engine.

or adaptive schemes [12] to exploit fast polygon rendering
hardware. As the surface deforms, the vertices of the tes-
sellation have to be recomputed. For refined surfaces, the
computations become more complicated and expensive.

Polygonal models are popular due to their simplicity,
flexibility, and the availability of efficient graphics hard-
ware. Adaptive refinement of arbitrary triangles meshes
is a recent topic in multi-resolution editing [7, 8]. These
methods are very powerful, but the underlying machinery is
complex and currently not applicable in real-time environ-
ments.

In physics-based animation, spring meshes are typically
composed of quadrilaterals or triangles, and the mass points
of the spring mesh are identified with the vertices of the ren-
dered surface [10, 18]. Adaptive refinement of such a mass-
spring system is non-trivial [6]. Volinoet al. [19] propose
an efficient method to smooth polygonal geometry, which
is applied to deformations caused by a mass-spring simula-
tion. Their method interpolates interior points of arbitrary
polygons, given its vertices and vertex normals. Using a
regular subdivision of the initial geometry, smooth surfaces
can be generated on the fly for rendering, similar to our ap-
proach. The tessellation does not adapt to surface curvature,
though. In the context of facial animation, Seoet al. [16] de-
scribe the application of level-of-detail techniques, generat-
ing not only coarser geometry, but also coarser animation
control for far away viewpoints.

Subdivision surfaces [11, 15] bridge the gap between
spline patches and polygon meshes in many respects, com-
bining the easy handling of meshes with the well-defined
properties of a parametric surface. Defined over an initial
quadrilateral or triangle control mesh, an arbitrarily close
approximation to a smooth limit surface can be generated
by repeatedly refining the mesh using simple rules. The
limit surface can either interpolate or approximate the con-
trol mesh nodes, depending on the subdivision rules. sub-
division surfaces are also suitable for use in computer an-
imation [3]. A very regular mesh of subdivision connec-
tivity is required, which often makes an initial remeshing

Figure 2. Examples of split configurations.
From left to right: One single edge split, three
edges split once, two edges split twice.

step necessary when an irregular mesh is given. In general,
the refinement operator is applied uniformly to a subdivi-
sion surface. Zorinet al. [21] describe a method (“adap-
tive synthesis”) that selectively computes refined triangles
by temporarily creating the needed parent triangles.

3. Method Overview

A generic adaptive refinement algorithm employing
some surface curvature criterion can be stated recursively:

refine(region r):
c := curvature(r)
if (c > threshold)

subdivide(r, c)
for all sub-regions s in r

refine(s)
else

draw(r)

Even if the tail-recursion is flattened by transformation into
a loop, two cost factors remain: the curvature has to be eval-
uated multiple times on the initial region (albeit on smaller
and smaller parts), and the changes caused by a subdivi-
sion step have to be stored in the geometry before the sub-
regions can be examined (or temporary storage must be al-
located per sub-region on each level of recursion.) In our
approach, we minimize these costs by evaluating the curva-
ture only once: based on the outcome, we perform up to two

1/8

1/8

/83

/83

1/21/2

/85

/3 8n

/3 8n

/3 8n

/3 8n /3 8n

1/8/3 41/8

Figure 3. Left: Computing the position of a
first-level split vertex (�). Right: Displacing
a vertex in the input mesh (•). The top row
shows the weights for an interior vertex, the
bottom row shows the boundary case.

refinements in one step, thus eliminating the need for stor-
ing the altered geometry for further evaluation. It is directly
drawn and discarded:

refine(region r):
c := curvature(r)
if (c > threshold)

region s = subdivide1or2(r, c)
draw(s)

else
draw(r)

In our implementation, the refinement procedure is ap-
plied to the triangle mesh just before rendering, as shown
in Figure 1. We make use of a number of adjacency rela-
tions that are defined on a triangle mesh, such as circulating
through the vertices adjacent to a given vertex, finding the
triangles sharing a given edge etc. On this behalf, we use
a data structure based on half-edges as described by Cam-
pagnaet al. [1].

Each edge of the given deformed mesh is examined to
decide whether it should be split into two or more parts,
causing subdivision of the adjacent triangles. Using the
new degrees of freedom provided by the split vertices, we
compute a smoother re-triangulation approximating the in-
put mesh. For the smoothing, simple local rules are used
that borrow from the subdivision idea. We don’t generate
any new vertices in the interior of an original triangle, thus
avoiding evaluation of new interior edges and keeping the
number of possible new triangulations manageable. The re-
triangulation is efficiently created by a table lookup opera-
tion. The resulting triangle set is then rendered instead of
the original triangle, unsplit triangles are rendered as usual.
Figure 2 shows examples of split configurations.

/83

1/8

1/8

/83

1/21/2
1/81/8 /3 4

1/161/16

1/16 1/16

1/161/16

/85

Figure 4. Left: Computing the position of a
second-level split vertex (N) from original
mesh vertices (©) and first-level split vertices
(�). Right: Displacing a first-level split vertex
(�). Non-existent first-level vertices (stippled
�) are approximated by linear interpolation.

The computed refinements are not reflected in the input
mesh, they are computed dynamically for each frame and
discarded after rendering. Thus, undoing refinements is not
necessary, and the input mesh remains unaltered. We also
do not retain any information about splits between frames.

4. The Algorithm

Our method creates sub-triangles by splitting triangle
edges once into two or twice into four parts. We start by
iterating over all edges of the input mesh, deciding whether
to split them once or twice. Since the splitting of each edge
is carried out in one single pass, there is no recursion in-
volved. In a second pass, the re-triangulation of each trian-
gle is obtained from the split configuration along its edges.

4.1. Splitting Criterion

We assume that the quality of the triangulation of the
undeformed mesh is good enough for the intended applica-
tion. Therefore we only want to split an edge if the curva-
ture of the surrounding mesh region has increased during
mesh deformation. As a simple and efficient test, we use
the dot product between the vertex normals at both ends of
an edge. If this scalar value drops below the value that has
been precomputed for the undeformed geometry, there is
more “bending” and the edge is marked for splitting once
or twice, depending on the difference of the dot products.

This criterion only uses the vertex normals of the exist-
ing nodes in the mesh. More complex criteria can be used
as well, e.g. measuring discrete curvature on the mesh [17].

2 04

6

8

10 1+3+9=13=⇒

...

13 (0,2,10) (2,4,6) (6,8,10) (2,6,10)
...

=⇒

Figure 5. A triangle is split and re-triangulated using a lookup table.

123 04

6
7

8
9

10
115

Figure 6. Numbering of original (©) and split
vertices (�, 4), starting at the first vertex of
edge 0 in a triangle.

The vertex normal dot product has proven to be sensitive
to the kind of deformations that occur in our application.
Additionally, it has the advantage of extremely low evalua-
tion cost, provided that vertex normals have been computed
before.

4.2. Vertex Smoothing

After having determined the split configuration for each
triangle, the vertex positions of the resulting sub-triangles
are computed. We want to make sure that this operation

• is computationally cheap;

• only changes the surface locally;

• results in a close approximation of the input mesh;

• handles mesh boundaries correctly.

Our approach to selective refinement is inspired by Loop
subdivision [11] in the variant proposed by Warren [20].
The Loop subdivision scheme also applies mid-edge split-
ting, and computing the refined surface only requires quick
averaging of old and new vertices with their immediate
neighbors. We’d like to point out that our method doesn’t
produce surfaces with any particular degree of continuity,
but just a smoother-looking approximation of the original.

Vertex positions corresponding to the first (i.e. mid-edge)
split of the triangle edges are calculated similarly to the
Loop scheme by weighted averaging. Figure 3 shows the
vertices that take part in these computations and the asso-
ciated weights. Since we don’t want to change the input

mesh, the new positions for the original vertices are tem-
porarily buffered.

For triangle edges that have been split twice, the vertex
positions corresponding to the second-level splits are ob-
tained in a similar fashion, see Figure 4. Here, we have to
use the previously computed positions of the first-level split
vertices. Since generally not all edges of a triangle are split,
some of these vertices may not have been computed before.
In this case, we simply take the mid-point of the respective
original edge.

Furthermore, the original mesh vertices are not
smoothed again for second-level splits, contrary to the
proper Loop subdivision scheme. In this way, we avoid
complicated updates involving adjacent triangles and keep
these vertices closer to their original locations.

4.3. Generating Sub-Triangles

Once the new vertex positions have been computed,
sub-triangles are created by connecting these points and
then passed to the rendering engine. To speed up the re-
triangulation step, we use a lookup table that has one entry
per split configuration. Each entry contains a sequence of
vertex indices, which represents a valid tessellation of the
original triangle. The points in each triangle are indexed
according to Figure 6. Ifsi ∈ {0, 1, 2} denotes the num-
ber of splits that have been applied to edgei ∈ {0, 1, 2}
of the current triangle, the index into the table is computed
from the ternary digitssi ass0 + 3s1 + 9s2, yielding 27
possible combinations. Figure 5 illustrates the table lookup
mechanism.

Each input triangle can be split into a maximum of ten
sub-triangles. No cracks appear in the generated mesh,
since adjacent triangles have a common edge and thus share
the split configuration along this edge, see Figure 7.

4.4. Time Coherent Splitting

For proper shading and texturing, vertex normal and tex-
ture coordinates of a new vertex are interpolated linearly
from the neighboring vertices along the edge. The neigh-
boring vertices are either original mesh vertices or previ-
ously created split vertices. Due to the nature of intensity
value interpolation in Gouraud shading, the re-triangulation

Figure 7. Adjacent triangles are split consis-
tently.

pattern in the lookup table does not affect the rendered out-
put. For flat shading, however, triangle normals have to be
computed for the generated sub-triangles. If the triangula-
tion is chosen only on the basis of the triangle’s current split
configuration, shading artifacts may appear: a split that is
introduced from one frame to the next may lead to a com-
pletely different triangulation, causing abrupt changes in the
surface normals of the sub-triangles. This can be alleviated
by taking the history of refinements on a triangle into ac-
count. If an edge is split further than in the previous frame,
a re-triangulation is generated that is equivalent to refining
that previous triangulation pattern.

Though we can’t avoid maintaining some sort of history,
we still don’t have to store split triangles between frames:
it is feasible to enumerate allsequencesof splits that can be
applied to a triangle, from the zero-length sequence contain-
ing no splits at all to the sequences of length six containing
two splits on each edge in every possible order. We can con-
struct a table of 271 entries, where each line corresponds to
one of these sequences. Each table entry is automatically
constructed by an algorithm that splits and subdivides a tri-
angle following the corresponding sequence.

In this way, if the history of applied splits is stored
along with the mesh, one can generate time-coherent re-
triangulations. However, splits can only be taken back in
reverse order, otherwise artifacts may again appear. Addi-
tional overhead is induced by the more complicated main-
tainance of data structures and the bigger lookup table (dete-
riorated data locality). In practice we usually avoid the over-
head of time coherent splitting, since flat shading is rarely
used in our applications.

5. Results

The current implementation of our refinement scheme
delivers good results in our facial animation environment.
Figure 9 shows a detail of the deformed mouth region dur-
ing animation. The rendered mesh is significantly smoothed
in interior and boundary regions, reducing shading artifacts
and improving the silhouette of the opened mouth.

In our experiments, there was no noticeable difference
in frame rate when running with or without dynamic refine-

Figure 8. Thin triangles that are generated
during adaptive refinement are aligned to the
direction of minimum curvature.

ment. This was to be expected in the simulation context,
where the computational load is mainly caused by the eval-
uation of the physics model and not by the rendering stage.

We found that the explicit implementation of one to two
refinement levels paid off, because there is no overhead for
recursion and maintaining dynamic data structures. This
will of course only hold under the assumption of a suffi-
ciently tessellated undeformed mesh. Though the method
could be extended to more than two splits per edge, our ex-
periments have shown that this level of refinement is suffi-
cient for the moderate deformations our initial model expe-
riences.

When looking at the refined triangle meshes as shown in
Figure 9, one clearly notices many long and thin triangles.
Usually, this is an indication of a badly generated triangle
mesh. Here, however, the thin triangles are exactly what we
want. Figure 8 shows that the automatically generated sub-
triangles are aligned to the direction of minimum curvature,
thus mimicking the alignment of folds on real skin.

6. Future Work

We would like to extend our method in several ways.
Visual quality can be further improved by refining the mesh
along silhouette edges. To achieve this, appropriate splitting
criteria have to be developed. Also, it would be interesting
to investigate the effects of other smoothing schemes, since
we currently don’t interpolate, but only approximate the in-
put surface. If the input geometry has been produced from a
finer mesh, one could do even better than smoothing: detail
information can be stored locally and used to place gener-
ated split vertices on the surface, as has been exercised in
multi-resolution editing.

Finally, the rendering performance can be improved by
generating re-triangulations that can be encoded as triangle
strips and / or triangle fans.

References

[1] S. Campagna, L. Kobbelt, and H.-P. Seidel. Directed Edges
— a Scalable Representation for Triangle Meshes.Journal

of Graphics Tools, 3(4):1–11, 1998.
[2] C. de Boor.A Practical Guide to Splines. Springer–Verlag,

New York, 1978.
[3] T. DeRose, M. Kass, and T. Truong. Subdivision Surfaces in

Character Animation. InComputer Graphics (SIGGRAPH
’98 Conf. Proc.), pages 85–94, July 1998.

[4] G. Farin.Curves and Surfaces for Computer Aided Geomet-
ric Design. Academic Press, San Diego, CA, 1993.

[5] D. R. Forsey and R. H. Bartels. Hierarchical B-Spline Re-
finement. InComputer Graphics (SIGGRAPH ’88 Conf.
Proc.), volume 22, pages 205–212, Aug. 1988.

[6] D. Hutchinson, M. Preston, and T. Hewitt. Adaptive Re-
finement for Mass-Spring Simulation. In7th Eurographics
Workshop on Animation and Simulation, pages 31–45, 1996.

[7] L. Kobbelt, T. Bareuther, and H.-P. Seidel. Multiresolution
Shape Deformations for Meshes with Dynamic Vertex Con-
nectivity. Computer Graphics Forum, 19(3):249–260, 2000.

[8] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. In-
teractive Multi-Resolution Modeling on Arbitrary Meshes.
In Computer Graphics (SIGGRAPH ’98 Conf. Proc.), pages
105–114, July 1998.

[9] S. Kumar, D. Manocha, and A. Lastra. Interactive Display of
Large-Scale NURBS Models. InSymposium on Interactive
3D Graphics 1995, pages 51–58, Apr. 1995.

[10] Y. Lee, D. Terzopoulos, and K. Waters. Realistic Modeling
for Facial Animations. InComputer Graphics (SIGGRAPH
’95 Conf. Proc.), pages 55–62, Aug. 1995.

[11] C. T. Loop. Smooth Subdivision Surfaces Based on Tri-
angles. Master’s thesis, University of Utah, Department of
Mathematics, 1987.

[12] J. W. Peterson. Tessellation of NURB Surfaces. InGraphics
Gems IV, pages 286–320. Academic Press, 1994.

[13] L. Piegl and W. Tiller.The NURBS Book. Springer–Verlag,
New York, 2. edition, 1997.

[14] A. Rockwood, K. Heaton, and T. Davis. Real-Time Ren-
dering of Trimmed Surfaces. InComputer Graphics (SIG-
GRAPH ’89 Conf. Proc.), volume 23, pages 107–116, July
1989.

[15] J. E. Schweitzer.Analysis and Application of Subdivision
Surfaces. PhD thesis, University of Washington, 1996.

[16] H. Seo and N. Magnenat-Thalmann. LoD Management on
Animating Face Models. InProc. IEEE Virtual Reality
2000, pages 161–168, 2000.

[17] G. Taubin. Estimating the Tensor of Curvature of a Surface
from a Polyhedral. InProc. International Conference on
Computer Vision, pages 902–907, 1995.

[18] A. Van Gelder. Approximate Simulation of Elastic Mem-
branes by Triangulated Spring Meshes.Journal of Graphics
Tools, 3(2):21–41, 1998.

[19] P. Volino and N. Magnenat-Thalmann. The SPHERIGON: A
Simple Polygon Patch for Smoothing Quickly your Polygo-
nal Meshes. InProc. Computer Animation ’98, pages 72–79,
1998.

[20] J. Warren. Subdivision Methods For Geometric Design. Un-
published manuscript. Preprint available athttp://www.
cs.rice.edu/jwarren/papers/book.ps.gz .

[21] D. Zorin, P. Schr̈oder, and W. Sweldens. Interactive Mul-
tiresolution Mesh Editing. InComputer Graphics (SIG-
GRAPH ’97 Conf. Proc.), pages 259–268, Aug. 1997.

Figure 9. Left: Initial face mesh (3247 trian-
gles). Right: Dynamically refined mesh (4767
triangles). Teeth and tongue have been re-
moved for clarity. The animation runs at ap-
prox. 5 fps on an sgi O2 with 250Mhz in both
cases.

